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Abstract
We explore a nonlocal connection between certain linear and nonlinear ordinary
differential equations (ODEs), representing physically important oscillator
systems, and identify a class of integrable nonlinear ODEs of any order. We
also devise a method to derive explicit general solutions of the nonlinear ODEs.
Interestingly, many well-known integrable models can be accommodated into
our scheme and our procedure thereby provides further understanding of these
models.

PACS numbers: 02.30.Hq, 05.45.−a

1. Introduction

In a recent paper, we have shown that the modified Emden-type equation with additional linear
forcing,

ẍ + 3kxẋ + k2x3 + λx = 0, (1)

where overdot denotes differentiation with respect to t and k and λ are arbitrary parameters,
exhibits certain unusual nonlinear dynamical properties [1]. For a particular sign of the
control parameter, namely, λ > 0, the frequency of oscillations of the nonlinear oscillator (1)
is completely independent of amplitude and remains the same as that of the linear harmonic
oscillator, thereby showing that the amplitude dependence of frequency is not necessarily a
fundamental property of nonlinear dynamical phenomena [1]. In this case, namely, λ > 0, the
system admits the explicit sinusoidal periodic solution

x(t) = A sin (ωt + δ)

1 − (
k
ω

)
A cos (ωt + δ)

, 0 � A <
ω

k
, ω =

√
λ, (2)

where A and δ are the arbitrary constants. The system (1) also exhibits certain other unusual
properties. For more details on the dynamics of this equation one may refer to [1].
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In the same paper, we have also noted that solution (2) can be derived unambiguously by
introducing a nonlocal transformation,

U = x ek
∫ t

0 x(t ′)dt ′ , (3)

and transforming equation (1) to the linear harmonic oscillator equation,

Ü + λU = 0. (4)

For λ > 0, the solution is U = A sin(ωt + δ), where A and δ are the arbitrary constants and
the frequency, ω = √

λ, is independent of the amplitude. Using (3) one finds that

ẋ = U̇

U
x − kx2. (5)

Integrating Riccati-type equation (5) and absorbing the integration constant with the existing
ones, one can obtain solution (2). We mention here that solution (2) can be derived in a number
of ways, for more details one may again refer to [1, 2]. One may also note that in the case
λ = 0, transformation (3) modifies equation (1) to the free particle equation. The linearization
and integrability properties of equation (1) with λ = 0 have received a considerable attention
in the nonlinear dynamics literature, see for example, [3–6].

Now the question that naturally arises is whether the nonlocal transformation which
connects the linear and nonlinear oscillators, namely equations (1) and (4), is a rare one
or there exists a wider class of nonlinear dynamical systems that are connected with linear
oscillators in a hidden way? Our studies reveal that there exists a class of linear oscillators
that are connected with nonlinear oscillator equations through nonlocal transformations. For
example, let us consider a damped linear harmonic oscillator, instead of the undamped linear
harmonic oscillator, that is,

Ü + c1U̇ + c2U = 0, (6)

where c1 and c2 are arbitrary parameters, and consider a more general form of nonlocal
transformation, that is,

U = x(t) e
∫ t

0 f (x(t ′))dt ′ , (7)

where f (x(t)) is an arbitrary function of x. Now substituting (7) into (6) we get a nonlinear
ODE of the form

ẍ + (2f + xf ′ + c1)ẋ + (f 2 + c1f + c2)x = 0, (8)

where the prime denotes the differentiation with respect to x. Interestingly, one can now see
that for certain specific forms of the function f , the associated nonlinear ODEs become the
well-known and well-studied models in the current nonlinear dynamics literature. To cite a
few, first let us consider the case f (x) = kx in (7). The associated nonlinear ODE,

ẍ + (c1 + 3kx)ẋ + k2x3 + c1kx2 + c2x = 0, (9)

is nothing but the generalized modified Emden-type equation (MEE) whose integrability
properties have been studied in detail in [3–10]. It is one of the linearizable second-order
nonlinear ODEs which admits eight parameter Lie point symmetries [4].

Choosing f (x) = kx2 in (7), one gets the generalized force-free Duffing–van der Pol
oscillator (DVP) equation

ẍ + (c1 + 4kx2)ẋ + k2x5 + kc1x
3 + c2x = 0, (10)

as its nonlinear counterpart. More details on the mathematical aspects and the underlying
dynamics of this equation can be found in [9–13]. On the other hand, fixing f (x) = k

x2 , one
gets another integrable nonlinear second-order ODE of the form [9]

ẍ + c1ẋ + c2x +
kc1

x
+

k2

x3
= 0. (11)
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The examples illustrated above clearly demonstrate that one can systematically classify a class
of integrable nonlinear ODEs through this way.

Motivated by these observations, in this paper, we carry out a detailed investigation on the
nonlocal connection between certain linear ODEs and their nonlinear counterparts of any order.
To make our study a systematic one we start our investigations at the level of second order and
end with the nth-order equations. Besides constructing integrable nonlinear equations we also
point out the importance of these nonlinear equations and obtain their solutions and thereby
bring out the significance of these systems.

The plan of the paper is as follows. In section 2, we make a detailed study on the
nonlocal connection between damped linear harmonic oscillator equation and certain nonlinear
oscillator equations of second order and describe a method of deriving general solutions of the
nonlinear ODEs. We extend this procedure to third- and nth-order ODEs in sections 3 and 4,
respectively. We present a general theory which connects the variable coefficient linear ODEs
with nonlinear ODEs and the method of finding the general solution in section 5. We present
our conclusion in section 6.

2. Second-order ODEs

To begin with let us consider a linear second-order ODE of the form (6), whose general solution
is U = a(t), where a(t) is a known function. Now we consider a nonlocal transformation of
the form

U = xn e
∫ t

0 (β(t ′)xm+γ (t ′))dt ′ , (12)

where n and m are the constants and β(t) and γ (t) are the arbitrary functions of t and substitute
it into (6) so that the latter becomes a nonlinear second-order ODE of the form

ẍ + (n − 1)
ẋ2

x
+

β2

n
x2m+1 + b1(t, x)ẋ + b2(t)x

m+1 + b3(t)x = 0, (13)

where

b1(t, x) = 1

n
(2nγ + nc1 + (m + 2n)βxm),

b2(t) = 1

n
(β̇ + 2γβ + c1β),

b3(t) = 1

n
(γ̇ + γ 2 + γ c1 + c2).

(14)

Obviously transformation (12) corresponds to the special case, f (x) = β(t)xm, γ (t) = 0,
in transformation (7) but with the prefactor of the exponential function taken as xn, where n
is arbitrary. We have been motivated to choose this form due to the examples illustrated in
the introduction. In all these cases, one might have noted that the function f (x) is a simple
polynomial function. As a consequence, we would like to generalize this form and see the
outcome. Such a generalization is indicated in section 5. However, here we note that the
form (13) itself yields several important nonlinear ODEs as see below.

Now the question is how to construct the general solution for the nonlinear equation (13)
from the known solution of (6). This can be done by using the identity,

U̇

U
= nẋ

x
+ β(t)xm + γ (t), (15)

derived from equation (12). Since U = a(t), where a(t) is a known function, the solution of
the second-order linear ODE (6), equation (15) can be brought to the form

ẋ = (â(t) − γ (t))
x

n
− β(t)

n
xm+1, (16)
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where â = ȧ
a

. Solving equation (16) we get the general solution for equation (13) in the form

x(t) = e
1
n

∫ t

0 (â(t ′)−γ (t ′))dt ′
[
C +

m

n

∫ t

0

(
β(t ′) e

m
n

∫ t ′
0 (â(t ′′)−γ (t ′′))dt ′′) dt ′

] −1
m

. (17)

Note that equation (17) contains three arbitrary constants (two in â(t), since a(t) is a
general solution of the second-order equation (6) and another constant C). However, one can
absorb one arbitrary constant with the other two and rewrite the solution in such a way that it
contains only two arbitrary constants, as we see below.

Let us assume that the solution of (6) be written in the form

U(t) = a(t) = I1 em1t + I2 em2t , (18)

where the Ii’s, i = 1, 2, are the integration constants and the mi’s, i = 1, 2, are the roots of
the auxiliary equation associated with the ODE (6). From (18) we get

â(t) = ȧ

a
= U̇

U
= m1Î 1 em1t + m2 em2t

Î 1 em1t + em2t
, (19)

where Î 1 = I1
I2

. Integrating both sides of equation (19) we get∫ t

0
â(t ′) dt ′ = log(Î 1 em1t + em2t ) = log

(
a(t)

I2

)
. (20)

Substituting expression (20) into equation (17), we get a general solution for equation (13) in
the form

x(t) =
(

a(t)

I2

) 1
n

e
−1
n

∫ t

0 γ (t ′)dt ′
[
C +

m

n

∫ t

0

(
β(t ′)

(
a(t ′)
I2

) m
n

e
−m
n

∫ t ′
0 γ (t ′′)dt ′′

)
dt ′

] −1
m

. (21)

Now the general solution (21) contains only two arbitrary constants, namely, Î 1 and C. In
the following, we consider certain important sub-cases of the linear oscillator (6) and discuss
their nonlinear counterparts and their physical significance.

2.1. Case (i) c1 = 0 and c2 = 0

In this case the linear equation (6) is nothing but the free particle equation. The associated
nonlinear equation can be fixed from (13) by restricting c1 = 0 and c2 = 0. The general
solution of the nonlinear equation turns out to be

x(t) = (t + I1)
1
n e

−1
n

∫ t

0 γ (t ′)dt ′
[
C +

m

n

∫ t

0

(
β(t ′)(t ′ + I1)

m
n e− m

n

∫ t ′
0 γ (t ′′)dt ′′) dt ′

] −1
m

, (22)

where I1 and C are the arbitrary constants.
The interesting fact is that equation (13) contains a family of important nonlinear ODEs.

To mention one such example let us choose n = 1, γ (t) = 0 and β(t) = k so that
equation (13) now becomes

ẍ + (m + 2)kxmẋ + k2x2m+1 = 0. (23)

The invariance, integrability properties and direct linearization through generalized
transformation of equation (23) can be found in [6, 9, 10]. From our above results, the
general solution of (23) can be fixed easily from (22) in the form

x(t) = (t + I1)

[
C +

mk

(m + 1)
(I1 + t)m+1

] −1
m

, (24)

which exactly coincides with the results obtained through other methods [6, 9, 10].
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2.2. Case (ii) c1 = 0 and c2 = constant

In this case, from equation (6), we have the linear harmonic oscillator equation at our hand. The
nonlocal transformation (12) transforms the linear harmonic oscillator equation, Ü +c2U = 0,
to the nonlinear ODE (13) with c1 = 0. The general solution of (13) turns out to be

x(t) = [cos(ωt + δ)]
1
n e

−1
n

∫ t

0 γ (t ′)dt ′
[
C +

m

n

∫ t

0

(
β(t ′) e− m

n

∫ t ′
0 γ (t ′′)dt ′′ cos

m
n (ωt ′ + δ)

)
dt ′

] −1
m

,

(25)

where ω = √
c2 and δ and C are the arbitrary constants.

Interestingly, one can deduce certain important nonlinear ODEs from (13) with c1 = 0.
One such interesting case is n = 1,m = 1, γ (t) = 0 and β(t) = k. In this case we get
equation (1). The unusual dynamical properties exhibited by this equation has already been
pointed out in the introduction.

Now we choose n = 1,m = −2, γ (t) = 0 and β(t) = k in equation (13) so that the latter
becomes

ẍ + c2x +
k2

x3
= 0, (26)

which is another important nonlinear ODE which arises in different areas of physics and has
been studied in detail in [14, 15]. The solution can be derived from (25) in the form

x(t) = cos(ωt + δ)

[
C − 2k

ω
tan(ωt + δ)

] 1
2

, ω = √
c2. (27)

Note that the solution defines a well-defined harmonic periodic oscillation with period T = 2π√
c2

which is the same as that of the unperturbed simple harmonic oscillator. This nonlinear
oscillator again supports our argument that the amplitude dependence of frequency is not
necessarily a fundamental property of nonlinear oscillations.

On the other hand, fixing n = 1,m = 2, γ (t) = −k2 and β(t) = k1 in equation (13) we
get

ẍ + (4k1x
2 − 2k2)ẋ + k2

1x
5 − 2k1k2x

3 +
(
c2 + k2

2

)
x = 0, (28)

which is nothing but the generalized force-free Duffing–van der Pol nonlinear oscillator
equation [9, 11–13]. The general solution can again be fixed from (25) as

x(t) = cos(ωt + δ)

[
C e−2k2t +

k1

2k2
+

k1

2
(
ω2 + k2

2

) (k2 cos 2(ωt + δ) + ω sin 2(ωt + δ))

]− 1
2

,

(29)

which exactly coincides with the result obtained through other methods [9, 11–13].
Finally, let us consider the case n = 1,m = q, γ (t) = −k2 and β(t) = k1 in

equation (13). In this case we end up with the following nonlinear ODE:

ẍ + ((q + 2)k1x
q − 2k2)ẋ + [(k1x

q − k2)
2 + c2]x = 0. (30)

Equation (30) admits the following general solution:

x(t) = cos(ωt + δ) ek2t

[
C + qk1

∫ t

0
(eqk2t

′
cosq(ωt ′ + δ)) dt ′

]− 1
q

. (31)

We mention here that for even values of q and positive values of k1 and k2 equation (30)
exhibits limit cycle oscillations [12].
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2.3. Case (iii) c1, c2 = constant

In this case the nonlocal transformation connects the damped harmonic oscillator ODE with
the nonlinear ODE (13). From (21), the general solution of equation (13) with c1 and c2 taking
constant values turns out to be

x(t) = (
e(

−c1+ω

2 )t + I1 e−(
c1+ω

2 )t
) 1

n e
−1
n

∫ t

0 γ (t ′)dt ′

×

C +

m

n

∫ t

0


β(t ′)

(
I1 + eωt ′

e(
c1+ω

2 )t ′

) m
n

e− m
n

∫ t ′
0 γ (t ′′)dt ′′


 dt ′




−1
m

, (32)

where ω =
√

c2
1 − 4c2 and I1 and C are the arbitrary constants.

In this case also one can identify several physically interesting nonlinear oscillator
equations. For example, choosing n = 1,m = 1, γ (t) = 0 and β(t) = k in
equation (13) we get an equation of the form (9). The general solution can be written
from (32) in the form

x(t) =
(

2c2(I1 + eωt )

C e(
c1+ω

2 )t − k(c1 − ω)I1 − k(c1 + ω) eωt

)
, (33)

where ω =
√

c2
1 − 4c2. Indeed our result exactly coincides with the result obtained in

the [8, 9].
The choice n = 1,m = 2, γ (t) = 0 and β(t) = k leads to an equation of the form (10).

The general solution of (10) can be fixed easily from (32) in the form

x(t) =
(

2c1c2(I1 + eωt )2

C e(
c1+ω

2 )t − kI 2
1 c1(c1 − ω) − kc1(c1 + ω) e2ωt − 8kI1c2 eωt

) 1
2

, (34)

which indeed the general solution of the genaralized force-free DVP oscillator equation [9].
In this section, besides the general case, we considered three different linear equations,

namely, free particle equation, linear harmonic oscillator and damped linear harmonic
equations and demonstrated how they are related to the well-known nonlinear models through
nonlocal transformations. In the following section, we extend the theory to third-order ODEs
and study the outcome.

3. Third-order ODEs

Let us consider a linear third-order ODE of the form

Ü + c1Ü + c2U̇ + c3U = 0, (35)

where c1, c2 and c3 are the arbitrary constants. The nonlocal transformation (12)
transforms (35) to the nonlinear ODE of the form

ẍ +

[
3(n − 1)

ẋ

x
+ d1(t, x)

]
ẍ + (n − 1)(n − 2)

ẋ3

x2
+ d2(t, x)ẋ2

+ d3(t, x)ẋ +
β3

n
x3m+1 + d4(t)x

2m+1 + d5(t)x
m+1 + d6(t)x = 0, (36)
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where

d1(t, x) = 1

n
(3nγ + nc1 + β(m + 3n)xm),

d2(t, x) = 1

n
((m(m + 2n) + (n − 1)(m + 3n))βxm−1 + n(n − 1)(3γ + c3)x

−1),

d3(t, x) = 1

n
((3γβ(m + 2n) + β̇(2m + 3n) + c1(m + 2n)β)xm + 3β2(m + n)x2m

+ n(3γ̇ + 3γ 2 + 2c1γ + c2)),

d4(t) = 1

n
(3ββ̇ + 3γβ2 + β2c1),

d5(t) = 1

n
(β̈ + 3(γ̇ β + γ β̇) + 3βγ 2 + (c1β̇ + c2β) + 2c1γβ),

d6(t) = 1

n
(γ̈ + 3γ γ̇ + γ 3 + c1(γ̇ + γ 2) + γ c2 + c3).

(37)

To obtain the exact solution, x(t), of equation (36) we again apply the results of
equations (15)–(17) to the present case. Since we are using the same form of nonlocal
transformation (12) to transform the nonlinear ODE (36) to the linear ODE (35), the general
solution of (36) looks exactly the same form as (17). The only difference is that the general
solution, in the present case, contains four integration constants (three of them come out from
the solution of the linear ODE (35) and the remaining one from solving (16)). Now let us
rewrite the general solution in such a way that it contains only three arbitrary constants by
absorbing the fourth one. To do so let us follow the same procedure which we adopted in the
case of second-order ODEs.

Let us write the general solution of equation (35) in the form

U(t) = a(t) = I1 em1t + I2 em2t + I3 em3t , (38)

where the Ii’s, i = 1, 2, 3, are the integration constants and the mi’s, i = 1, 2, 3, are the roots
of the auxiliary equation associated with the differential equation (35). From (38) we get

â(t) = ȧ

a
= U̇

U
= m1Î 1 em1t + m2Î 2 em2t + m3 em3t

Î 1 em1t + Î 2 em2t + em3t
, (39)

where Î i = Ii

I3
, i = 1, 2. Integrating both sides of equation (39) we get∫ t

0
â(t ′) dt ′ = log(Î 1 em1t + Î 2 em2t + em3t ) = log

(
a(t)

I3

)
. (40)

Substituting expression (40) into (17), we get the general solution for equation (36) in the form

x(t) =
(

a(t)

I3

) 1
n

e
−1
n

∫ t

0 γ (t ′)dt ′
[
C +

m

n

∫ t

0

(
β(t ′)

(
a(t ′)
I3

) m
n

e
−m
n

∫ t ′
0 γ (t ′′)dt ′′

)
dt ′

] −1
m

. (41)

We note that the general solution (41) now contains only three arbitrary constants, namely,
Î 1, Î 2 and C.

Since we have three arbitrary parameters in the linear ODE (35), one can consider certain
specific sub-cases of physical interest. In the following, we discuss some of them.

3.1. Case (i) ci = 0, i = 1, 2, 3

In this case, from equation (35), we have a simple linear equation d3U
dt3 = 0 which can be

connected to the third-order nonlinear ODE (36) (with c1, c2, c3 = 0) through the nonlocal
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transformation (12). The general solution of (36) can be fixed easily from (41) in the form

x(t) =
(

1

2
t2 + I1t + I2

) 1
n

e
−1
n

∫ t

0 γ (t ′)dt ′

×
[
C +

m

n

∫ t

0

(
β(t ′)

(
1

2
t ′2 + I1t

′ + I2

) m
n

e− m
n

∫ t ′
0 γ (t ′′)dt ′′

)
dt ′

] −1
m

, (42)

where I1, I2 and C are the arbitrary constants.
Equation (36) includes a class of important nonlinear systems. For example, choosing

n = 1,m = 1, γ (t) = 0 and β(t) = k equation (36) becomes

ẍ + 4kxẍ + 3kẋ2 + 6k2x2ẋ + k3x4 = 0. (43)

Equation (43) is a special case of the Chazy equation XII (with N = 2 and parametric
restrictions A = 0, B = 0 in [18]), which has been studied in detail in [16–22]. The general
solution can be fixed easily from (42) in the form

x(t) =
(

kt2

2 + I1t + I1I2

k2t3

6 + kI1
2 t2 + kI1I2t + I1I3

)
. (44)

3.2. Case (ii) c3 = 0, c2 = 0 and c1 = constant

In this case, the linear equation (35) becomes Ü + c1Ü = 0 and the nonlocal
transformation (12) transforms this ODE to the form (36) with c2, c3 = 0. In this case
we have the general solution of the form

x(t) = (e−c1t + I1t + I2)
1
n e

−1
n

∫ t

0 γ (t ′)dt ′

×
[
C +

m

n

∫ t

0

(
β(t ′)(e−c1t

′
+ I1t

′ + I2)
m
n e− m

n

∫ t ′
0 γ (t ′′)dt ′′) dt ′

] −1
m

, (45)

where I1, I2 and C are the arbitrary constants. Choosing n = 1,m = 1, γ (t) = 0 and β(t) = k

equation (36) becomes

ẍ + (c1 + 4kx)ẍ + 3kẋ2 + 3k(c1 + 2kx)xẋ + (c1 + kx)k2x3 = 0. (46)

The general solution of equation (46) can be fixed easily from (45) in the form

x(t) =
(

e−c1t + I1t + I2

C + k
2c1

(2e−c1t + c1I1t2 + 2c1I2t)

)
. (47)

3.3. Case (iii) c1 = 0, c2 = 0 and c3 = constant

In this case, the linear ODE (35) assumes the form Ü + c3U = 0 and the nonlocal
transformation (12) transforms this equation, Ü + c3U = 0, to the nonlinear ODE (36)
with c1, c2 = 0. The general solution of (36) turns out to be

x(t) =
(

I1 e−kt + e
k
2 t cos

(√
3k

2
t + δ

)) 1
n

e
−1
n

∫ t

0 γ (t ′)dt ′
[
C +

m

n

∫ t

0

(
β(t ′) e− m

n

∫ t ′
0 γ (t ′′)dt ′′

×
(

I1 e−kt ′ + e
k
2 t ′ cos

(√
3k

2
t ′ + δ

)) m
n )

dt ′
] −1

m

, (48)
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where c3 = k3 and I1, C and δ are the arbitrary constants. By choosing n = 1,m = 1, γ (t) = 0
and β(t) = k in equation (36) one can get a special case of the Chazy equation XII (with
N = 2 and parametric restrictions A = c3 and B = 0 in [18])

ẍ + 4kxẍ + 3kẋ2 + 6k2x2ẋ + k3x4 + c3x = 0. (49)

The general solution of (49) can be fixed easily from (48) in the form

x(t) =
(

I1 e−kt + e
k
2 t cos

(√
3k
2 t + δ

)
C − k

2k

(
2I1 e−kt − e

k
2 t

(
cos

(√
3k
2 t + δ

)
+

√
3 sin

(√
3k
2 t + δ

))
)

. (50)

3.4. Case (iv) ci = constant, i = 1, 2, 3

In this case the nonlocal transformation transforms the nonlinear ODE (36) to the
linear ODE (35). The general solution of the latter becomes

x(t) = (em1t + I1 em2t + I2 em3t )
1
n e

−1
n

∫ t

0 γ (t ′)dt ′

×
[
C +

m

n

∫ t

0
(β(t ′)(em1t

′
+ I1 em2t

′
+ I2 em3t

′
)

m
n e− m

n

∫ t ′
0 γ (t ′′)dt ′′) dt ′

] −1
m

, (51)

where I1, I2 and C are the arbitrary constants and m3
i + c1m

2
i + c2mi + c3 = 0, i = 1, 2, 3, and

m2,3 = 1
2

[ − (m1 + c1) ±
√

−3m2
1 − 2c1m1 + c2

1 − 4c2
]
.

Equation (36) includes a class of important nonlinear systems. For n = 1,m = 1, γ (t) =
0 and β(t) = k equation (36) becomes

ẍ + (c1 + 4kx)ẍ + 3kẋ2 + (c2 + 3kc1 + 6k2x)xẋ + (c1 + kx)k2x3 + c2kx2 + c3x = 0. (52)

Equation (52) is a generalized version of the above special cases (43) and (49) of the Chazy
equation XII, with additional terms. The general solution of (52) can be fixed easily from (51)
in the form

x(t) = (em1t + I1 em2t + I2 em3t )

[
C + k

(
em1t

m1
+

I1

m2
em2t +

I2

m3
em3t

)]−1

. (53)

To our knowledge, the above solution is a new one. For a detailed description of Chazy class of
third-order ordinary differential equations, their analytic properties and their general solutions
one may refer to [18], besides the original work of Chazy [16].

In this section, we demonstrated the nonlocal connection that exists between linear and
nonlinear ODEs of third order. In the following section, we extend the theory to nth-order
ODEs.

4. nth-order equations

Let us consider a most general linear ODE of the form(
dn

dtn
+ c1

d(n−1)

dt (n−1)
+ · · · + cn−1

d

dt
+ cn

)
U(t) = 0, (54)

where the ci’s, i = 1, 2, . . . , n, are the arbitrary constants. The nonlocal transformation (12)
connects (54) to the nonlinear ODE of the form(

D
(n)
h + c1D

(n−1)
h + · · · + cn−1D

(1)
h + cn

)
xn = 0, (55)
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where D
(n)
h = (

d
dt

+ β(t)xm + γ (t)
)n

. For n = 2 and 3 equation, (55) coincides with (13)
and (36) respectively. Repeating the procedure described in sections 2 and 3 one can derive
the general solution of the nth-order nonlinear ODE, (55), in the form

x(t) = e
1
n

∫ t

0 (â(t ′)−γ (t ′))dt ′
[
C +

m

n

∫ t

0

(
β(t ′) e

m
n

∫ t ′
0 (â(t ′′)−γ (t ′′))dt ′′) dt ′

] −1
m

. (56)

Here again â(t) = ȧ
a

, where a is the known solution of equation (54). The solution contains
n + 1 integration constants, namely, I1, I2, . . . , In and C. However, as was done in the second-
and third-order ODEs, respectively, we can absorb one integration constant and rewrite the
solution in such a way that it contains only n integration constants. Doing so we arrive at

x(t) =
(

a(t)

In

) 1
n

e
−1
n

∫ t

0 γ (t ′)dt ′
[
C +

m

n

∫ t

0

(
β(t ′)

(
a(t ′)
In

) m
n

e
−m
n

∫ t ′
0 γ (t ′′)dt ′′

)
dt ′

] −1
m

. (57)

By appropriately fixing the constants and arbitrary functions in equation (55) one
can deduce the nonlinear equation of interest. The general solution can also be fixed
unambiguously from equation (57).

5. General theory

So far we focused our attention only on the cases in which the nonlocal transformation that
connects the nonlinear ODEs with constant coefficient linear ODEs. However, one can also
explore the hidden connection between nonlinear ODEs and variable coefficient linear ODEs.
In the following we briefly discuss the underlying theory.

Let us begin with an nth-order linear ODE of the form(
dn

dtn
+ c1(t)

d(n−1)

dt (n−1)
+ · · · + cn−1(t)

d

dt
+ cn(t)

)
U(t) = 0, (58)

where the ci’s, i = 1, 2, . . . , n, are the functions of t, whose general solution be U = a(t),
where a(t) is some known function. Now we consider a general nonlocal transformation of
the form

U(t) = g(t, x) e
∫ t

0 f (t ′,x)dt ′ , (59)

where f (t, x) and g(t, x) are the arbitrary functions of t and x and substitute it into (58) so
that the latter becomes a nonlinear ODE of the form(

D
(n)
h + c1(t)D

(n−1)
h + · · · + cn−1(t)D

(1)
h + cn(t)

)
g(t, x) = 0, (60)

where D
(n)
h = (

d
dt

+f (t, x)
)n

. Since we have assumed that the multiplicative function g(t, x) is
a function of the variables t and x, the associated nonlinear ODE, (60), takes a very complicated
form. However, the task is to deduce the interesting cases from (60) which can be integrated
explicitly. Again using the identity

U̇

U
= gxẋ + gt

g
+ f, (61)

with U = a(t), equation (61) can be brought to the form

ẋ = (â(t) − f (t, x))
g(t, x)

gx(t, x)
− gt (t, x)

gx(t, x)
, â = ȧ

a
. (62)

Now, it is well known that only for certain specific forms of f and g, equation (62) can be
integrated [23]. At least for these cases, the general solution for the nonlinear ODE (60) can
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be obtained explicitly. In this way one can classify a class of integrable nonlinear ODEs of
any order through nonlocal transformations of the form (59).

We note that equation (60) can also be obtained from equation (58) by using a simple
‘gauge transformation’

dn

dtn
→ D

(n)
h =

(
d

dt
+ f (t, x)

)n

, f (t, x) = d

dt
h(t, x)

and

U(t) → g(x, t).

Finally, we mention that in the case f (t, x) = 0 the nonlocal transformation, (59), becomes
purely a local one and the resultant linearizable equations can be directly obtained from
equation (60).

6. Conclusion

In this paper, we have developed a novel way of identifying integrable nonlinear ODEs by
connecting linear and nonlinear oscillator equations of any order through suitable nonlocal
transformations. The proposed method is simple and straightforward. More importantly,
our procedure not only identifies a class of integrable nonlinear ODEs of any order but
also unambiguously gives their underlying solutions and thereby leads to the complete
understanding of the dynamics of the given nonlinear system. As we have pointed out in
the introduction, the modified Emden-type equation (1) admits certain unusual nonlinear
dynamical properties. The dynamical properties underlying other integrable nonlinear ODEs
still remain to be explored in detail and are possibly worth investigating further. It is also of
interest to investigate the existence of the above types of nonlocal connections in the case of
partial differential equations as well, which we hope to pursue further.
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